Published in

American Institute of Physics, Applied Physics Letters, 20(86), p. 202101

DOI: 10.1063/1.1925320

Links

Tools

Export citation

Search in Google Scholar

Controlled shallow single ion implantation in silicon using an active substrate for sub-20 keV ions

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We demonstrate a method for the controlled implantation of single ions into a silicon substrate with energy of sub-20-keV. The method is based on the collection of electron-hole pairs generated in the substrate by the impact of a single ion. We have used the method to implant single 14-keV P31 ions through nanoscale masks into silicon as a route to the fabrication of devices based on single donors in silicon.