Links

Tools

Export citation

Search in Google Scholar

Large-scale transcriptome analyses reveal new genetic marker candidates of head, neck, and thyroid cancer

Journal article published in 2005 by Pc C. dos Santos, Eduardo M. Reis, Andrey dos Santos, Fernando Tsukumo, Gma M. Thompson, Patrícia P. dos Reis, Sandro R. Valentini, Aline M. da Silva, Paulo C. C. dos Santos, A. dos Santos, Cleslei Fernando Zanelli, Sergio Verjovski-Almeida, Eloiza H. Tajara, Flávia Cristina C. Rodrigus-Lisoni, Mar Cleide Sogayar and other authors.
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

A detailed genome mapping analysis of 213,636 expressed sequence tags (EST) derived from nontumor and tumor tissues of the oral cavity, larynx, pharynx, and thyroid was done. Transcripts matching known human genes were identified; potential new splice variants were flagged and subjected to manual curation, pointing to 788 putatively new alternative splicing isoforms, the majority (75%) being insertion events. A subset of 34 new splicing isoforms (5% of 788 events) was selected and 23 (68%) were confirmed by reverse transcription-PCR and DNA sequencing. Putative new genes were revealed, including six transcripts mapped to well-studied chromosomes such as 22, as well as transcripts that mapped to 253 intergenic regions. In addition, 2,251 noncoding intronic RNAs, eventually involved in transcriptional regulation, were found. A set of 250 candidate markers for loss of heterozygosis or gene amplification was selected by identifying transcripts that mapped to genomic regions previously known to be frequently amplified or deleted in head, neck, and thyroid tumors. Three of these markers were evaluated by quantitative reverse transcription-PCR in an independent set of individual samples. Along with detailed clinical data about tumor origin, the information reported here is now publicly available on a dedicated Web site as a resource for further biological investigation. This first in silico reconstruction of the head, neck, and thyroid transcriptomes points to a wealth of new candidate markers that can be used for future studies on the molecular basis of these tumors. Similar analysis is warranted for a number of other tumors for which large EST data sets are available.