Published in

Mary Ann Liebert, Zebrafish, 3(11), p. 248-254, 2014

DOI: 10.1089/zeb.2013.0958

Links

Tools

Export citation

Search in Google Scholar

The comparison of methods for measuring oxidative stress in zebrafish brains

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The zebrafish is a versatile model organism with the potential to contribute to our understanding of the molecular pathological mechanisms underlying Alzheimer's disease (AD). An early characteristic of AD brain pathology is lipid peroxidation resulting from oxidative stress. However, changes in lipid peroxidation have not yet been assessed in zebrafish brains, and an earlier attempt to observe changes in F₂-isoprostane levels in the brains of zebrafish exposed to hypoxia was unsuccessful. In this article, we examine the utility of various assays of lipid peroxidation and more general assays of intracellular oxidative stress to detect the changes in oxidative stress in the brains of adult zebrafish exposed to hypoxia or explanted into a sodium azide solution for chemical mimicry of hypoxia. Levels of F₂-isoprostanes and F₄-neuroprostanes were low and variable in zebrafish brains such that statistically significant changes due to hypoxia or chemical mimicry of hypoxia could not be observed. However, measurement of lipid hydroperoxides did reveal significant changes in lipid peroxidation under these conditions, while analyses of catalase gene expression and an assay based on 2',7'-dicholorofluorescein oxidation also revealed changes in oxidative stress levels. ; Seyyed Hani Moussavi Nik, Kevin Croft, Trevor A. Mori, and Michael Lardelli