Springer Nature [academic journals on nature.com], Translational Psychiatry, 1(11), 2021
DOI: 10.1038/s41398-020-01166-w
Full text: Download
AbstractWith an increasing prevalence of mild cognitive impairment (MCI) and Alzheimer’s disease (AD) in response to an aging population, it is critical to identify and understand neuroprotective mechanisms against cognitive decline. One potential mechanism is redundancy: the existence of duplicate elements within a system that provide alternative functionality in case of failure. As the hippocampus is one of the earliest sites affected by AD pathology, we hypothesized that functional hippocampal redundancy is protective against cognitive decline. We compared hippocampal functional redundancy derived from resting-state functional MRI networks in cognitively normal older adults, with individuals with early and late MCI, as well as the relationship between redundancy and cognition. Posterior hippocampal redundancy was reduced between cognitively normal and MCI groups, plateauing across early and late MCI. Higher hippocampal redundancy was related to better memory performance only for cognitively normal individuals. Critically, functional hippocampal redundancy did not come at the expense of network efficiency. Our results provide support that hippocampal redundancy protects against cognitive decline in aging.