Oxford University Press, Monthly Notices of the Royal Astronomical Society, 3(504), p. 3823-3830, 2021
Full text: Download
ABSTRACT Mrk 231 is the closest radio-quiet quasar known and one of the most luminous infrared galaxies in the local Universe. It is characterized by the co-existence of a radio jet and powerful multiphase multiscale outflows, making it an ideal laboratory to study active galactic nucleus (AGN) feedback. We analyse the multi-epoch very long baseline interferometry data of Mrk 231 and estimate the jet head advance speed to be ≲0.013 c, suggesting a sub-relativistic jet flow. The jet position angle changes from −113○ in the inner parsec to −172○ at a projected distance of 25 pc. The jet structure change might result from either a jet bending following the rotation of the circum-nuclear disc or the projection of a helical jet on the plane of the sky. In the large opening angle (∼60○) cone, the curved jet interacts with the interstellar medium and creates wide-aperture-angle shocks that subsequently dissipate a large portion of the jet power through radiation and contribute to powering the large-scale outflows. The low power and bent structure of the Mrk 231 jet, as well as extensive radiation dissipation, are consistent with the obstruction of the short-length jet by the host galaxy’s environment.