Published in

Springer Nature [academic journals on nature.com], International Journal of Obesity, 5(45), p. 1114-1123, 2021

DOI: 10.1038/s41366-021-00781-x

Links

Tools

Export citation

Search in Google Scholar

Placental mobilization of free fatty acids contributes to altered materno-fetal transfer in obesity

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Metabolic changes in obese pregnant women, such as changes of plasma lipids beyond physiological levels, may subsequently affect fetal development in utero. These metabolic derangements may remain in the offspring and continue throughout life. The placenta mediates bidirectional exchange of nutrients between mother and fetus. The impact of prepregnancy obesity on placental transfer of lipids is still unknown. Objective We aimed to examine materno-to-fetal free fatty acid (FFA) transfer by a combined experimental and modeling approach. Flux of 13C-labeled FFA was evaluated by ex vivo perfusion of human placentae as a function of prepregnancy obesity. Mathematical modeling complemented ex vivo results by providing FFA kinetic parameters. Results Obesity was strongly associated with elevated materno-to-fetal transfer of applied 13C-FFA. Clearance of polyunsaturated 13C-docosahexaenoic acid (DHA) was most prominently affected. The use of the mathematical model revealed a lower tissue storage capacity for DHA in obese compared with lean placentae. Conclusion Besides direct materno-to-fetal FFA transfer, placental mobilization accounts for the fetal FA supply. Together, with metabolic changes in the mother and an elevated materno-fetal FFA transfer shown in obesity, these changes suggest that they may be transmitted to the fetus, with yet unknown consequences.