Published in

American Astronomical Society, Astrophysical Journal, 1(909), p. 2, 2021

DOI: 10.3847/1538-4357/abda51

Links

Tools

Export citation

Search in Google Scholar

LOFAR Observations of a Jet-driven Piston Shock in the Low Solar Corona

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract The Sun produces highly dynamic and eruptive events that can drive shocks through the corona. These shocks can accelerate electrons, which result in plasma emission in the form of a type II radio burst. Despite the large number of type II radio burst observations, the precise origin of coronal shocks is still subject to investigation. Here, we present a well-observed solar eruptive event that occurred on 2015 October 16, focusing on a jet observed in the extreme ultraviolet by the Atmospheric Imaging Assembly (SDO/AIA), a streamer observed in white light by the Large Angle and Spectrometric Coronagraph (SOHO/LASCO), and a metric type II radio burst observed by the LOw Frequency Array (LOFAR). LOFAR interferometrically imaged the fundamental and harmonic sources of a type II radio burst and revealed that the sources did not appear to be cospatial, as would be expected from the plasma emission mechanism. We correct for the separation between the fundamental and harmonic using a model that accounts for scattering of radio waves by electron density fluctuations in a turbulent plasma. This allows us to show the type II radio sources were located ∼0.5R above the jet and propagated at a speed of ∼1000 km s−1, which was significantly faster than the jet speed of ∼200 km s−1. This suggests that the type II burst was generated by a piston shock driven by the jet in the low corona.