Dissemin is shutting down on January 1st, 2025

Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 10(118), 2021

DOI: 10.1073/pnas.2007873118

Links

Tools

Export citation

Search in Google Scholar

Adaptive evolution of hybrid bacteria by horizontal gene transfer

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance In a parallel evolution experiment, we probe lateral gene transfer between two Bacillus subtilis lineages close to the species boundary. We show that laboratory evolution by horizontal gene transfer can rapidly generate hybrid organisms with broad genomic and functional alterations. By combining genomics, transcriptomics, fitness assays, and statistical modeling, we map the selective effects underlying gene transfer. We show that transfer takes place under genome-wide positive and negative selection, generating a net fitness increase in hybrids. The evolutionary dynamics efficiently navigates this fitness landscape, finding viable paths with increasing fraction of transferred genes.