Published in

Elsevier, Molecular and Cellular Proteomics, 10(2), p. 1055-1067, 2003

DOI: 10.1074/mcp.m300054-mcp200

Links

Tools

Export citation

Search in Google Scholar

Identification of novel phosphorylation sites on Xenopus laevis Aurora A and analysis of phosphopeptide enrichment by immobilized metal-affinity chromatography

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Mass spectrometric analysis of proteolytically derived phosphopeptides has developed into a widespread technique for the identification of phosphorylated amino acids. Using liquid chromatography-electrospray ionization tandem mass spectrometry, 14 phosphorylation sites were identified on Xenopus laevis His6-Aurora A, a highly conserved regulator of centrosome maturation and cell division. These included seven novel phosphorylation sites, Ser-12, Thr-21, Thr-103, Ser-116, Thr-122, Tyr-155, and Thr-294, as well as the previously identified regulatory sites, Ser-53, Thr-295, and Ser-349. The identification of these novel phosphorylation sites will be important for future studies aimed at elucidating the mechanisms of Aurora A regulation by phosphorylation. Furthermore, we demonstrate that a "kinase-inactive" mutant of Aurora A, K169R, still retains 10% of activity of the wild-type enzyme in vitro along with occupancy of Thr-295 and Ser-12. However, mutation of Asp-281 to Ala completely abolishes activity of the enzyme and should therefore be used preferentially as a genuine kinase-dead construct. Because of the abundance of phosphorylated residues on His6-Aurora A, we found this protein to be an ideal tool for the characterization of immobilized metal-affinity chromatography (IMAC) as a method for phosphopeptide enrichment from complex mixtures. We present a detailed analysis of the binding and elution properties of both the phosphopeptides and unphosphorylated peptides of His6-Aurora A to Fe3+-IMAC before and after methyl esterification. Moreover, we demonstrate a significant difference in enrichment of phosphopeptides when different resins are used for Fe3+-IMAC and characterize the strengths and limitations of this methodology for the study of phosphoproteomics.