Published in

Springer, Glycoconjugate Journal, 8(26), p. 1075-1084, 2009

DOI: 10.1007/s10719-009-9228-y

Links

Tools

Export citation

Search in Google Scholar

Spectroscopic and differential scanning calorimetric studies on the unfolding of Trichosanthes dioica seed lectin. similar modes of thermal and chemical denaturation

Journal article published in 2009 by M. Kavitha, Musti J. Swamy
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Physico-chemical and unfolding studies have been carried out on Trichosanthes dioica seed lectin (TDSL). The lectin exhibited maximum activity between pH 7.0 and 10.0, which decreased steeply at lower pH. The hemagglutination activity of TDSL was unaffected in the temperature range 4-50 degrees C, but decreased rapidly at higher temperatures. Differential scanning calorimetric studies indicate that thermal unfolding of TDSL is an irreversible process, which could be described by a three-state model. The calorimetric scan recorded at pH 7.0 consists of two transitions, occurring at around 338.6 K, and 342.8 K. In the presence of carbohydrate ligands both these transitions shifted to higher temperatures, suggesting that ligand binding stabilizes the native conformation of the protein. The unfolding temperature was highest at pH 5.0 indicating that TDSL is more stable at acidic pH. Gdn.HCl induced unfolding, monitored by following changes in the intrinsic fluorescence properties of the protein, was also observed to be a three-state process involving an intermediate. CD spectroscopy indicates that the secondary and tertiary structures of TDSL are rather similar at different pH values, indicating that the lectin structure remains essentially unchanged over a wide range of pH.