Published in

MDPI, Forests, 3(12), p. 314, 2021

DOI: 10.3390/f12030314

Links

Tools

Export citation

Search in Google Scholar

Effects of Pneumatophore Density on Methane Emissions in Mangroves

Journal article published in 2021 by Chiao-Wen Lin ORCID, Yu-Chen Kao, Wei-Jen Lin ORCID, Chuan-Wen Ho, Hsing-Juh Lin ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Mangroves play an important role in carbon sequestration. However, mangroves can be sources of greenhouse gas (GHG) emissions. In this study, methane (CH4) emissions and related soil properties were determined in multiple mangroves in Taiwan, including Kandelia obovata and Avicennia marina mangroves. K. obovata possess prop roots, whereas pneumatophores are found in A. marina. Our results showed that mangrove soils were significant sources of CH4 emissions, which should be accounted for in mangrove carbon budgets. In particular, CH4 emissions in the A. marina mangroves were approximately 50- to 100-fold those of the K. obovata mangroves and the adjoining mudflats. Multiple regression analyses indicated that the soil salinity and pH in K. obovata mangroves and the soil redox potential and organic content in the mudflats were the key factors affecting CH4 emissions. However, the pneumatophore density alone explained approximately 48% of the variation in CH4 emissions in the A. marina mangroves. More pneumatophores resulted in higher CH4 emissions in the A. marina mangroves. Thus, compared with the assessed soil properties, the contribution of pneumatophores to the transportation of CH4 from soil was more significant. In addition to soil properties, our results demonstrated that the root structure may also affect GHG emissions from mangroves.