Dissemin is shutting down on January 1st, 2025

Published in

American Heart Association, Stroke, Suppl_1(52), 2021

DOI: 10.1161/str.52.suppl_1.p636

Links

Tools

Export citation

Search in Google Scholar

Abstract P636: Social Determinants of Stroke Hospitalization and Mortality in the United States

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Introduction: Stroke hospitalization and mortality are influenced by various social determinants. This ecological study aimed to determine the associations between social determinants and stroke hospitalization and outcome at county-level in the United States. Methods: County-level data were recorded from the Centers for Disease Control and Prevention as of January 7, 2020. We considered four outcomes: all-age (1) Ischemic and (2) Hemorrhagic stroke Death rates per 100,000 individuals (ID and HD respectively), and (3) Ischemic and (4) Hemorrhagic stroke Hospitalization rate per 1,000 Medicare beneficiaries (IH and HH respectively). Results: Data of 3,225 counties showed IH (12.5 ± 3.4) and ID (22.2 ± 5.1) were more frequent than HH (2.0 ± 0.4) and HD (9.8 ± 2.1). Income inequality as expressed by Gini Index was found to be 44.6% ± 3.6% and unemployment rate was 4.3% ± 1.5%. Only 29.8% of the counties had at least one hospital with neurological services. The uninsured rate was 11.0% ± 4.7% and people living within half a mile of a park was only 18.7% ± 17.6%. Age-adjusted obesity rate was 32.0% ± 4.5%. In regression models, age-adjusted obesity (OR for IH: 1.11; HH: 1.04) and number of hospitals with neurological services (IH: 1.40; HH: 1.50) showed an association with IH and HH. Age-adjusted obesity (ID: 1.16; HD: 1.11), unemployment (ID: 1.21; HD: 1.18) and income inequality (ID: 1.09; HD: 1.11) showed an association with ID and HD. Park access showed inverse associations with all four outcomes. Additionally, population per primary-care physician was associated with HH while number of pharmacy and uninsured rate were associated with ID. All associations and OR had p ≤0.04. Conclusion: Unemployment and income inequality are significantly associated with increased stroke mortality rates.