Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Clinical Chemistry, 7(67), p. 987-997, 2021

DOI: 10.1093/clinchem/hvab048

Links

Tools

Export citation

Search in Google Scholar

A New Equation Based on the Standard Lipid Panel for Calculating Small Dense Low-Density Lipoprotein-Cholesterol and Its Use as a Risk-Enhancer Test

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Increased small dense low-density lipoprotein-cholesterol (sdLDL-C) is a risk factor for atherosclerotic cardiovascular disease (ASCVD) but typically requires advanced lipid testing. We describe two new equations, first one for calculating large buoyant LDL-C (lbLDL-C), based only upon results from the standard lipid panel, and the second one for sdLDL-C. Methods Equations for sdLDL-C and lbLDL-C were generated with least-squares regression analysis using the direct Denka sdLDL-C assay as reference (n = 20 171). sdLDL-C was assessed as a risk-enhancer test in the National Heart and Nutrition Examination Survey (NHANES), and for its association with ASCVD in the Multi-Ethnic Study of Atherosclerosis (MESA). Results The newly derived equations depend on two terms, namely LDL-C as determined by the Sampson equation, and an interaction term between LDL-C and the natural log of triglycerides (TG). The lbLDL-C equation (lbLDLC=1.43 × LDLC-0.14 ×(ln⁡(TG)× LDLC)- 8.99) was more accurate (R2 = 0.933, slope = 0.94) than the sdLDL-C equation (sdLDLC=LDLC- lbLDLC; R2 = 0.745, slope = 0.73). Using the 80th percentile (46 mg/dL) as a cut-point, sdLDL-C identified in NHANES additional high-risk patients not identified by other risk-enhancer tests based on TG, LDL-C, apolipoprotein B, and nonHDL-C. By univariate survival-curve analysis, estimated sdLDL-C was superior to other risk-enhancer tests in predicting ASCVD events in MESA. After multivariate adjustment for other known ASCVD risk factors, estimated sdLDL-C had the strongest association with ASCVD compared to other lipid parameters, including measured sdLDL-C. Conclusions Estimated sdLDL-C could potentially be calculated on all patients tested with a standard lipid panel to improve ASCVD risk stratification.