Full text: Download
The development of effective, nontoxic antifungal agents is one of the most important challenges for medicinal chemistry. A series of isoxazolo [3,4-b]pyridine-3(1H)-one derivatives previously synthesized in our laboratory demonstrated promising antifungal properties. The main goal of this study was to investigate their retention behavior in a human serum proteins-high-performance liquid chromatography (HSA-HPLC) system and explore the molecular mechanism of HSA-isoxazolone interactions using a quantitative structure–retention relationship (QSRR) approach. In order to realize this goal, multiple linear regression (MLR) modeling has been performed. The proposed QSRR models presented correlation between experimentally determined lipophilicity and computational theoretical molecular descriptors derived from Dragon 7.0 (Talete, Milan, Italy) software on the affinity of isoxazolones to HSA. The calculated plasma protein binding (PreADMET software) as well as chromatographic lipophilicity (logkw) and phospholipophilicity (CHIIAM) parameters were statistically evaluated in relation to the determined experimental HAS affinities (logkHSA). The proposed model met the Tropsha et al. criteria R2 > 0.6 and Q2 > 0.5 These results indicate that the obtained model can be useful in the prediction of an affinity to HSA for isoxazolone derivatives and they can be considered as an attractive alternative to HSA-HPLC experiments.