Published in

MDPI, International Journal of Environmental Research and Public Health, 6(18), p. 2995, 2021

DOI: 10.3390/ijerph18062995

Links

Tools

Export citation

Search in Google Scholar

Impact of Ginger Root Powder Dietary Supplement on Productive Performance, Egg Quality, Antioxidant Status and Blood Parameters in Laying Japanese Quails

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Medicinal plants with antibacterial effects have been used by humans for centuries. In the recent decade, due to the development of antibiotic resistant strains, many studies have focused on the use of natural compounds as feed additives in livestock. Ginger, among all, have repetitively shown numerous biological activities, antibacterial, and antibiotic properties. This study was conducted to evaluate the effects of ginger root powder (GP) on the performance, egg quality, and blood parameters of Japanese quail. A total of 240 10-weeks old female quails were used in a completely randomized design with 4 treatments, 4 replicates, and 15 birds per replicate. Dietary treatment were basal diet (control) and basal diet containing 0.5, 1, and 1.5 g/kg of ginger root powder. Growth performance and exterior and interior quality of egg were measured biweekly over eight-week period. At the end of experiment blood parameters were evaluated. The results showed that diet supplementation with different levels of GP had no significant effect on egg production, egg mass weight, and egg weight (p > 0.05). However, feed intake and feed conversion ratio were significantly lower in the treatment group than the control in the whole period (p < 0.05). Egg Quality traits (shape index, albumen index, the percentage of albumen, yolk and shell, yolk pH, and shell thickness and strength) were not affected by the supplements in the whole trial period. Addition of GP significantly increased the albumen height, Haugh unit, and albumen pH in comparison with the control treatment (p < 0.05). GP reduced blood triglyceride level yet was ineffective on blood total antioxidant capacity and malondialdehyde. In conclusion, dietary supplementation with GP, could improve productive performance and the egg quality of Japanese quails. Nonetheless a comprehensive study needs to be performed in order to evaluate the impact of quail dietary ginger supplementation on productive performance and egg quality and their stability during storage time for commercial use.