Published in

MDPI, Marine Drugs, 3(19), p. 151, 2021

DOI: 10.3390/md19030151

Links

Tools

Export citation

Search in Google Scholar

N-Amino-l-Proline Methyl Ester from an Australian Fish Gut-Derived Fungus: Challenging the Distinction between Natural Product and Artifact

Journal article published in 2021 by Osama Mohamed ORCID, Zeinab Khalil ORCID, Robert Capon ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Further investigation into a fish gut-derived fungus Evlachovaea sp. CMB-F563, previously reported to produce the unprecedented Schiff base prolinimines A–B (1–2), revealed a new cryptic natural product, N-amino-l-proline methyl ester (5)—only the second reported natural occurrence of an N-amino-proline, and the first from a microbial source. To enable these investigations, we developed a highly sensitive analytical derivitization methodology, using 2,4-dinitrobenzaldehyde (2,4-DNB) to cause a rapid in situ transformation of 5 to the Schiff base 9, with the latter more readily detectable by UHPLC-DAD (400 nm) and HPLC-MS analyses. Moreover, we demonstrate that during cultivation 5 is retained in fungal mycelia, and it is only when solvent extraction disrupts mycelia that 5 is released to come in contact with the furans 7–8 (which are themselves produced by thermal transformation of carbohydrates during media autoclaving prior to fungal inoculation). Significantly, on contact, 5 undergoes a spontaneous condensation with 7–8 to yield the Schiff base prolinimines 1–2, respectively. Observations made during this study prompted us to reflect on what it is to be a natural product (i.e., 5), versus an artifact (i.e., 1–2), versus a media component (i.e., 7–8).