Published in

Springer, Aquatic Sciences - Research Across Boundaries, 2(83), 2021

DOI: 10.1007/s00027-021-00791-x

Links

Tools

Export citation

Search in Google Scholar

Hydrological, geochemical and land use drivers of greenhouse gas dynamics in eleven sub-tropical streams

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractGreenhouse gas (GHG) emissions from freshwater streams are poorly quantified in sub-tropical climates, especially in the southern hemisphere where land use is rapidly changing. Here, we examined the distribution, potential drivers, and emissions of carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) from eleven Australian freshwater streams with varying catchment land uses yet similar hydrology, geomorphology, and climate. These sub-tropical streams were a source of CO2 (74 ± 39 mmol m−2 day−1), CH4 (0.04 ± 0.06 mmol m−2 day−1), and N2O (4.01 ± 5.98 µmol m−2 day−1) to the atmosphere. CO2 accounted for ~ 97% of all CO2-equivalent emissions with CH4 (~ 1.5%) and N2O (~ 1.5%) playing a minor role. Episodic rainfall events drove changes in stream GHG due to the release of soil NOx (nitrate + nitrite) and dissolved organic carbon (DOC). Groundwater discharge as traced by radon (222Rn, a natural groundwater tracer) was not an apparent source of CO2 and CH4, but was a source of N2O in both agricultural and forest catchments. Land use played a subtle role on greenhouse gas dynamics. CO2 and CH4 increased with catchment forest cover during the wet period, while N2O and CH4 increased with agricultural catchment area during the dry period. Overall, this study showed how DOC and NOx, land use, and rainfall events interact to drive spatial and temporal dynamics of GHG emissions in sub-tropical streams using multiple linear regression modelling. Increasing intensive agricultural land use will likely decrease regional CO2 and CH4 emissions, but increase N2O.