Dissemin is shutting down on January 1st, 2025

Published in

Frontiers Media, Frontiers in Marine Science, (8), 2021

DOI: 10.3389/fmars.2021.592378

Links

Tools

Export citation

Search in Google Scholar

Physical and Biogeochemical Regionalization of the Southern Ocean and the CCAMLR Zone 48.1

Journal article published in 2021 by Giovanni Testa, Andrea Piñones ORCID, Leonardo R. Castro
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The Southern Ocean plays a major role in the Earth’s climate, provides fisheries products and help the maintenance of biodiversity. The degree of correspondence between physical and biogeochemical spatial variability and regionalization were investigated by calculating the main physical factors that statistically explained the biogeochemical variability within the Southern Ocean and the 48.1 zone of the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). The mean value of physical and biogeochemical variables was estimated during austral summer within a grid of 1° × 1° south of 50°S. The regionalization was developed using both non-hierarchical and hierarchical clustering method, whereas BIO-ENV package and distance-based redundancy analysis (db-RDA) were applied in order to calculate which physical factors primarily explained the biogeochemical spatial variability. A total of 12 physical and 18 biogeochemical significant clusters were identified for the Southern Ocean (alpha: 0.05). The combination of bathymetry and sea ice coverage majorly explained biogeochemical variability (Spearman rank correlation coefficient: 0.68) and db-RDA indicated that physical variables expressed the 60.1% of biogeochemical variance. On the other hand, 14 physical and 16 biogeochemical significant clusters were identified for 48.1 CCAMLR zone. Bathymetry was the main factor explaining biogeochemical variability (Spearman coefficient: 0.81) and db-RDA analysis resulted in 77.1% of biogeochemical variance. The correspondence between physical and biogeochemical regions was higher for CCAMLR 48.1 zone with respect to the whole Southern Ocean. Our results provide useful information for both Southern Ocean and CCAMLR 48.1 zone ecosystem management and modeling parametrization.