Springer Nature [academic journals on nature.com], Leukemia, 9(35), p. 2635-2649, 2021
DOI: 10.1038/s41375-021-01201-9
Full text: Download
AbstractMicroenvironment contributes to follicular lymphoma (FL) pathogenesis and impacts survival with macrophages playing a controversial role. In the present study, using FL primary samples and HK follicular dendritic cells (FDC) to mimic the germinal center, together with mouse models, we have analyzed the three-way crosstalk of FL-FDC-macrophages and derived therapeutic opportunities. Ex vivo primary FL-FDC co-cultures (n = 19) and in vivo mouse co-xenografts demonstrated that FL-FDC crosstalk favors tumor growth and, via the secretion of CCL2 and CSF-1, promotes monocyte recruitment, differentiation, and polarization towards an M2-like protumoral phenotype. Moreover, FL-M2 co-cultures displayed enhanced angiogenesis, dissemination, and immunosuppression. Analysis of the CSF-1/CSF-1R pathway uncovered that CSF-1 was significantly higher in serum from grade 3A FL patients, and that high CSF-1R expression in FL biopsies correlated with grade 3A, reduced overall survival and risk of transformation. Furthermore, CSF-1R inhibition with pexidartinib (PLX3397) preferentially affected M2-macrophage viability and polarization program disrupting FL-M2 positive crosstalk. In vivo CSF1-R inhibition caused M2 reduction and repolarization towards M1 macrophages and antitumor effect cooperating with anti-CD20 rituximab. In summary, these results support the role of macrophages in FL pathogenesis and indicate that CSF-1R may be a relevant prognostic factor and a novel therapeutic target cooperating with anti-CD20 immunotherapy.