Published in

Hindawi, Complexity, (2021), p. 1-27, 2021

DOI: 10.1155/2021/6634991

Links

Tools

Export citation

Search in Google Scholar

Development of TOPSIS Technique under Pythagorean Fuzzy Hypersoft Environment Based on Correlation Coefficient and Its Application towards the Selection of Antivirus Mask in COVID-19 Pandemic

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Orange circle
Preprint: archiving restricted
Orange circle
Postprint: archiving restricted
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The correlation coefficient between two variables plays an important role in statistics. Also, the accuracy of relevance assessment depends on information from a set of discourses. The data collected from numerous statistical studies are full of exceptions. The Pythagorean fuzzy hypersoft set (PFHSS) is a parameterized family that deals with the subattributes of the parameters and an appropriate extension of the Pythagorean fuzzy soft set. It is also the generalization of the intuitionistic fuzzy hypersoft set (IFHSS), which is used to accurately assess insufficiency, anxiety, and uncertainties in decision-making. The PFHSS can accommodate more uncertainties compared to the IFHSS, and it is the most substantial methodology to describe fuzzy information in the decision-making process. The core objective of the this study is to develop the notion and features of the correlation coefficient and the weighted correlation coefficient for PFHSS and to introduce the aggregation operators such as Pythagorean fuzzy hypersoft weighted average (PFHSWA) and Pythagorean fuzzy hypersoft weighted geometric (PFHSWG) operators under the PFHSS scenario. A prioritization technique for order preference by similarity to the ideal solution (TOPSIS) under PFHSS based on correlation coefficients and weighted correlation coefficients is presented. Through the developed methodology, a technique for solving multiattribute group decision-making (MAGDM) problem is planned. Also, the importance of the developed methodology and its application in indicating multipurpose antivirus mask throughout the COVID-19 pandemic period is presented. A brief comparative analysis is described with the advantages, effectiveness, and flexibility of numerous existing studies that demonstrate the effectiveness of the proposed method.