Published in

Nature Research, npj Climate and Atmospheric Science, 1(4), 2021

DOI: 10.1038/s41612-021-00174-x

Links

Tools

Export citation

Search in Google Scholar

Investigating the impact of cloud-radiative feedbacks on tropical precipitation extremes

Journal article published in 2021 by Brian Medeiros ORCID, Amy C. Clement, James J. Benedict ORCID, Bosong Zhang ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractAlthough societally important, extreme precipitation is difficult to represent in climate models. This study shows one robust aspect of extreme precipitation across models: extreme precipitation over tropical oceans is strengthened through a positive feedback with cloud-radiative effects. This connection is shown for a multi-model ensemble with experiments that make clouds transparent to longwave radiation. In all cases, tropical extreme precipitation reduces without cloud-radiative effects. Qualitatively similar results are presented for one model using the cloud-locking method to remove cloud feedbacks. The reduced extreme precipitation without cloud-radiative feedbacks does not arise from changes in the mean climate. Rather, evidence is presented that cloud-radiative feedbacks enhance organization of convection and most extreme precipitation over tropical oceans occurs within organized systems. This result suggests that climate models must correctly predict cloud structure and properties, as well as capture the essence of organized convection in order to accurately represent extreme rainfall.