Published in

MDPI, Diagnostics, 3(11), p. 545, 2021

DOI: 10.3390/diagnostics11030545

Links

Tools

Export citation

Search in Google Scholar

Desmoplastic Small Round Cell Tumor with “Pure” Spindle Cell Morphology and Novel EWS-WT1 Fusion Transcript: Expanding the Morphological and Molecular Spectrum of This Rare Entity

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background: Desmoplastic small round cell tumor (DSRCT) is a rare pediatric soft tissue neoplasm composed of small round tumor cells with prominent stromal desmoplasia, polyphenotypic differentiation and EWSR1-WT1 gene fusion. We, herein, present a unique case of DSRCT, exhibiting a pure spindle cell morphology, absence of desmoplastic stroma and showing a novel EWS-WT1 fusion transcript. Methods: A 12-year-old boy presented multiple intra-abdominal, confluent and mass-forming nodules that affected the entire abdominal and pelvic cavities. Results: Histologically, the nodules were composed of spindle cells with scant cytoplasm and oval nuclei arranged into short, intersecting fascicles and set in a scant, non-desmoplastic, stroma. Immunohistochemically, neoplastic cells were stained with vimentin, desmin, WT-1 (C-terminus antibodies) and EMA. Reverse-transcriptase polymerase chain reaction (RT-PCR) analysis showed the presence of an unusual chimeric transcript, composed of an in-frame junction of exon 9 of EWS to exon 7 of WT1, confirming the histological diagnosis of DSRCT. Conclusions: The present case contributes to widen the morphological spectrum of this entity; notably, the additional presence of a novel chimeric fusion transcript contributes to making the present case even more unique. Whether the detection of the above-mentioned fusion transcripts could explain the unusual morphology of the tumor remains to be established.