Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Journal of Instrumentation, 03(16), p. P03032, 2021

DOI: 10.1088/1748-0221/16/03/p03032

Links

Tools

Export citation

Search in Google Scholar

Pulse shape discrimination in CUPID-Mo using principal component analysis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract CUPID-Mo is a cryogenic detector array designed to search for neutrinoless double-beta decay (0νββ) of 100Mo. It uses 20 scintillating 100Mo-enriched Li2MoO4 bolometers instrumented with Ge light detectors to perform active suppression of α backgrounds, drastically reducing the expected background in the 0νββ signal region. As a result, pileup events and small detector instabilities that mimic normal signals become non-negligible potential backgrounds. These types of events can in principle be eliminated based on their signal shapes, which are different from those of regular bolometric pulses. We show that a purely data-driven principal component analysis based approach is able to filter out these anomalous events, without the aid of detector response simulations.