Published in

American Astronomical Society, Astrophysical Journal Letters, 1(910), p. L6, 2021

DOI: 10.3847/2041-8213/abe7dd

Links

Tools

Export citation

Search in Google Scholar

The Core Mass Function in the Orion Nebula Cluster Region: What Determines the Final Stellar Masses?

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Applying dendrogram analysis to the CARMA-NRO C18O (J = 1–0) data having an angular resolution of ∼8″, we identified 692 dense cores in the Orion Nebula Cluster region. Using this core sample, we compare the core and initial stellar mass functions in the same area to quantify the step from cores to stars. About 22% of the identified cores are gravitationally bound. The derived core mass function (CMF) for starless cores has a slope similar to Salpeter’s stellar initial mass function (IMF) for the mass range above 1 M , consistent with previous studies. Our CMF has a peak at a subsolar mass of ∼0.1 M , which is comparable to the peak mass of the IMF derived in the same area. We also find that the current star formation rate is consistent with the picture in which stars are born only from self-gravitating starless cores. However, the cores must gain additional gas from the surroundings to reproduce the current IMF (e.g., its slope and peak mass), because the core mass cannot be accreted onto the star with 100% efficiency. Thus, the mass accretion from the surroundings may play a crucial role in determining the final stellar masses of stars.