Published in

MDPI, Materials, 6(14), p. 1566, 2021

DOI: 10.3390/ma14061566

Links

Tools

Export citation

Search in Google Scholar

Beneficial Influence of Water-Soluble PEG-Functionalized C60 Fullerene on Human Osteoblast Growth In Vitro

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The purpose of this study was to make an initial assessment of new PEG (polyethylene glycol)-functionalized C60 fullerene derivative for potential bone tissue engineering applications. Thus, Fourier Transform Infrared spectroscopy analysis, thermogravimetric analysis, and cyclic voltammetry measurement were performed. Moreover, cell culture experiments in vitro were carried out using normal human osteoblasts. Cell viability and proliferation were evaluated using colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test as well as by fluorescent staining. It was demonstrated that resultant derivative possessed good solubility in water, high temperature stability, and retained favorable electron accepting properties of C60 fullerene core. Most important, new fullerene derivatives at low concentrations did not exhibit cytotoxic effect and supported osteoblast proliferation compared to control. Thanks to all mentioned properties of new PEG-functionalized C60 fullerene derivative, it seems that it could be used as a component of polymer-based bone scaffolds in order to enhance their biological properties.