Published in

MDPI, Polymers, 6(13), p. 989, 2021

DOI: 10.3390/polym13060989

Links

Tools

Export citation

Search in Google Scholar

Composite P(3HB-3HV)-CS Spheres for Enhanced Antibiotic Efficiency

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Natural-derived biopolymers are suitable candidates for developing specific and selective performance-enhanced antimicrobial formulations. Composite polymeric particles based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and chitosan, P(3HB-3HV)-CS, are herein proposed as biocompatible and biodegradable delivery systems for bioproduced antibiotics: bacitracin (Bac), neomycin (Neo) and kanamycin (Kan). The stimuli-responsive spheres proved efficient platforms for boosting the antibiotic efficiency and antibacterial susceptibility, as evidenced against Gram-positive and Gram-negative strains. Absent or reduced proinflammatory effects were evidenced on macrophages in the case of Bac-/Neo- and Kan-loaded spheres, respectively. Moreover, these systems showed superior ability to sustain and promote the proliferation of dermal fibroblasts, as well as to preserve their ultrastructure (membrane and cytoskeleton integrity) and to exhibit anti-oxidant activity. The antibiotic-loaded P(3HB-3HV)-CS spheres proved efficient alternatives for antibacterial strategies.