Dissemin is shutting down on January 1st, 2025

Published in

Cambridge University Press, Experimental Results, (2), 2021

DOI: 10.1017/exp.2021.5

Links

Tools

Export citation

Search in Google Scholar

The effect of ultrafiltration transmembrane permeation on the flow field in a surrogate system of an artificial kidney

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Renal Replacement Therapies generally associated to the Artificial Kidney (AK) are membrane-based treatments that assure the separation functions of the failing kidney in extracorporeal blood circulation. Their progress from conventional hemodialysis towards high-flux hemodialysis (HFHD) through the introduction of ultrafiltration membranes characterized by high convective permeation fluxes intensified the need of elucidating the effect of the membrane fluid removal rates on the increase of the potentially blood-traumatizing shear stresses developed adjacently to the membrane. The AK surrogate consisting of two-compartments separated by an ultrafiltration membrane is set to have water circulation in the upper chamber mimicking the blood flow rates and the membrane fluid removal rates typical of HFHD. Pressure drop mirrors the shear stresses quantification and the modification of the velocities profiles. The increase on pressure drop when comparing flows in slits with a permeable membrane and an impermeable wall is ca. 512% and 576% for $ \mathrm{CA}22/5\%{\mathrm{SiO}}_2 $ and $ \mathrm{CA}30/5\%{\mathrm{SiO}}_2 $ membranes, respectively.