Published in

American Meteorological Society, Journal of Hydrometeorology, 2021

DOI: 10.1175/jhm-d-20-0262.1

Links

Tools

Export citation

Search in Google Scholar

Flash Drought in CMIP5 Models

Journal article published in 2021 by David Hoffmann, Ailie J. E. Gallant ORCID, Mike Hobbins
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract‘Flash drought’ (FD) describes the rapid onset of drought on sub-seasonal times scales. It is of particular interest for agriculture as it can deplete soil moisture for crop growth in just a few weeks. To better understand the processes causing FD, we evaluate the importance of evaporative demand and precipitation by comparing three different drought indices that estimate this hazard using meteorological and hydrological parameters from the CMIP5 suite of models. We apply the Standardized Precipitation Index (SPI); the Evaporative Demand Drought Index (EDDI), derived from evaporative demand (E0); and the Evaporative Stress Index (ESI), which connects atmospheric and soil moisture conditions by measuring the ratio of actual and potential evaporation. The results show moderate-to-strong relationships (r2 > 0.5) between drought indices and upper level soil moisture on daily time scales, especially in drought-prone regions. We find that all indices are able to identify FD in the top 10-cm layer of soil moisture in a similar proportion to that in the models’ climatologies. However, there is significant inter-model spread in the characteristics of the FDs identified. This spread is mainly caused by an overestimation of E0, indicating stark differences in the land surface models and coupling in individual CMIP5 models. Of all indices, the SPI provides the highest skill in predicting FD prior to or at the time of onset in soil moisture, while both EDDI and ESI show significantly lower skill. The results highlight that the lack of precipitation is the main contributor to FDs in climate models, with E0 playing a secondary role.