Published in

MDPI, Applied Sciences, 7(11), p. 3185, 2021

DOI: 10.3390/app11073185

Links

Tools

Export citation

Search in Google Scholar

Integrated Approach for Detecting Convection Effects in Geothermal Environments Based on TIR Camera Measurements

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Thermal characterization of soils is essential for many applications, including design of geothermal systems. Traditional devices focus on the computation of thermal conductivity, omitting the analysis of the convection effect, which is important for horizontal geothermal systems. In this paper, a procedure based on the monitoring of the surface of the soil with a thermal infrared (TIR) camera is developed for the evaluation of the global thermal imbalance on the surface and in-depth. This procedure allows for the computation of thermal conductivity and global convection heat rate, consequently constituting a complete thermal characterization of the geothermal system. The validation of the results is performed through the evaluation of the radiometric calibration of the thermal infrared camera used for the monitoring and the comparison of the thermal conductivity values obtained in-depth, with traditional methods, and for the surface of the system.