Published in

MDPI, Machine Learning and Knowledge Extraction, 2(3), p. 374-391, 2021

DOI: 10.3390/make3020019

Links

Tools

Export citation

Search in Google Scholar

On the Scale Invariance in State of the Art CNNs Trained on ImageNet

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The diffused practice of pre-training Convolutional Neural Networks (CNNs) on large natural image datasets such as ImageNet causes the automatic learning of invariance to object scale variations. This, however, can be detrimental in medical imaging, where pixel spacing has a known physical correspondence and size is crucial to the diagnosis, for example, the size of lesions, tumors or cell nuclei. In this paper, we use deep learning interpretability to identify at what intermediate layers such invariance is learned. We train and evaluate different regression models on the PASCAL-VOC (Pattern Analysis, Statistical modeling and ComputAtional Learning-Visual Object Classes) annotated data to (i) separate the effects of the closely related yet different notions of image size and object scale, (ii) quantify the presence of scale information in the CNN in terms of the layer-wise correlation between input scale and feature maps in InceptionV3 and ResNet50, and (iii) develop a pruning strategy that reduces the invariance to object scale of the learned features. Results indicate that scale information peaks at central CNN layers and drops close to the softmax, where the invariance is reached. Our pruning strategy uses this to obtain features that preserve scale information. We show that the pruning significantly improves the performance on medical tasks where scale is a relevant factor, for example for the regression of breast histology image magnification. These results show that the presence of scale information at intermediate layers legitimates transfer learning in applications that require scale covariance rather than invariance and that the performance on these tasks can be improved by pruning off the layers where the invariance is learned. All experiments are performed on publicly available data and the code is available on GitHub.