Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Remote Sensing, 8(13), p. 1424, 2021

DOI: 10.3390/rs13081424

Links

Tools

Export citation

Search in Google Scholar

Development of Tools for Coastal Management in Google Earth Engine: Uncertainty Bathtub Model and Bruun Rule

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Sea-level rise is a problem increasingly affecting coastal areas worldwide. The existence of free and open-source models to estimate the sea-level impact can contribute to improve coastal management. This study aims to develop and validate two different models to predict the sea-level rise impact supported by Google Earth Engine (GEE)—a cloud-based platform for planetary-scale environmental data analysis. The first model is a Bathtub Model based on the uncertainty of projections of the sea-level rise impact module of TerrSet—Geospatial Monitoring and Modeling System software. The validation process performed in the Rio Grande do Sul coastal plain (S Brazil) resulted in correlations from 0.75 to 1.00. The second model uses the Bruun rule formula implemented in GEE and can determine the coastline retreat of a profile by creatting a simple vector line from topo-bathymetric data. The model shows a very high correlation (0.97) with a classical Bruun rule study performed in the Aveiro coast (NW Portugal). Therefore, the achieved results disclose that the GEE platform is suitable to perform these analysis. The models developed have been openly shared, enabling the continuous improvement of the code by the scientific community.