Published in

Blood Cancer Discovery, 4(2), p. 370-387, 2021

DOI: 10.1158/2643-3230.bcd-20-0108

Links

Tools

Export citation

Search in Google Scholar

Lysine Demethylase 5A Is Required for MYC-Driven Transcription in Multiple Myeloma

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Lysine demethylase 5A (KDM5A) is a negative regulator of histone H3 lysine 4 trimethy­lation (H3K4me3), a histone mark associated with activate gene transcription. We identify that KDM5A interacts with the P-TEFb complex and cooperates with MYC to control MYC-targeted genes in multiple myeloma cells. We develop a cell-permeable and selective KDM5 inhibitor, JQKD82, that increases H3K4me3 but paradoxically inhibits downstream MYC-driven transcriptional output in vitro and in vivo. Using genetic ablation together with our inhibitor, we establish that KDM5A supports MYC target gene transcription independent of MYC itself by supporting TFIIH (CDK7)- and P-TEFb (CDK9)–mediated phosphorylation of RNAPII. These data identify KDM5A as a unique vulnerability in multiple myeloma functioning through regulation of MYC target gene transcription and establish JQKD82 as a tool compound to block KDM5A function as a potential therapeutic strategy for multiple myeloma. Significance: We delineate the function of KDM5A in activating the MYC-driven transcriptional landscape. We develop a cell-permeable KDM5 inhibitor to define the activating role of KDM5A on MYC target gene expression and implicate the therapeutic potential of this compound in mouse models and multiple myeloma patient samples. See related video from the AACR Annual Meeting 2021: https://vimeo.com/554896826