Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Sensors, 8(21), p. 2730, 2021

DOI: 10.3390/s21082730

Links

Tools

Export citation

Search in Google Scholar

Adaptive SNN for Anthropomorphic Finger Control

Journal article published in 2021 by Mircea Hulea ORCID, George Iulian Uleru, Constantin Florin Caruntu ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Anthropomorphic hands that mimic the smoothness of human hand motions should be controlled by artificial units of high biological plausibility. Adaptability is among the characteristics of such control units, which provides the anthropomorphic hand with the ability to learn motions. This paper presents a simple structure of an adaptive spiking neural network implemented in analogue hardware that can be trained using Hebbian learning mechanisms to rotate the metacarpophalangeal joint of a robotic finger towards targeted angle intervals. Being bioinspired, the spiking neural network drives actuators made of shape memory alloy and receives feedback from neuromorphic sensors that convert the joint rotation angle and compression force into the spiking frequency. The adaptive SNN activates independent neural paths that correspond to angle intervals and learns in which of these intervals the rotation the finger rotation is stopped by an external force. Learning occurs when angle-specific neural paths are stimulated concurrently with the supraliminar stimulus that activates all the neurons that inhibit the SNN output stopping the finger. The results showed that after learning, the finger stopped in the angle interval in which the angle-specific neural path was active, without the activation of the supraliminar stimulus. The proposed concept can be used to implement control units for anthropomorphic robots that are able to learn motions unsupervised, based on principles of high biological plausibility.