Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 16(118), 2021

DOI: 10.1073/pnas.2026811118

Links

Tools

Export citation

Search in Google Scholar

Single-cell visualization and quantification of trace metals in Chlamydomonas lysosome-related organelles

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Transition metals are of crucial importance for primary productivity; their scarcity limits crop yield in agriculture and carbon sequestration on a global scale. Copper (Cu), iron (Fe), and manganese (Mn) are among the most important trace elements that enable the redox chemistry in oxygenic photosynthesis. The single-celled, eukaryotic green alga Chlamydomonas reinhardtii is a choice experimental system for studying trace metal homeostasis in the context of phototrophy, offering all the advantages of a classical microbial system with a well-characterized photosystem and trace metal metabolism machinery of relevance to plants. This project identifies and differentiates different trace metal storage sites in Chlamydomonas and uncovers the dynamics of trace metal storage and mobilization in situations of fluctuating resources.