Dissemin is shutting down on January 1st, 2025

Published in

Optica, Optics Express, 10(29), p. 14394, 2021

DOI: 10.1364/oe.419998

Links

Tools

Export citation

Search in Google Scholar

Demonstration of single-frame coherent X-ray diffraction imaging using triangular aperture: Towards dynamic nanoimaging of extended objects

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Coherent diffraction imaging (CDI) is a powerful method for visualizing the structure of an object with a high spatial resolution that exceeds the performance limits of the lens. Single-frame CDI in the X-ray region has potential use for probing dynamic phenomena with a high spatiotemporal resolution. Here, we experimentally demonstrate a general method for single-frame X-ray CDI using a triangular aperture and a Fresnel zone plate. Using 5 keV synchrotron radiation X-rays, we reconstructed the object image of the locally illuminated area with a spatial resolution of higher than 50 nm and an exposure time of more than 0.1 s without prior information about the sample. After a 10 s exposure, a resolution of 17 nm was achieved. The present method opens new frontiers in the study of dynamics at the nanoscale by using next-generation synchrotron radiation X-rays/free-electron lasers as light sources.