Published in

SAGE Publications, Journal of Psychopharmacology, 8(35), p. 983-991, 2021

DOI: 10.1177/02698811211008569

Links

Tools

Export citation

Search in Google Scholar

Assessment of the neuronal underpinnings of cognitive impairment in bipolar disorder with a picture encoding paradigm and methodological lessons learnt

Journal article published in 2021 by Jz Petersen ORCID, J. Macoveanu ORCID, Hl Kjærstad, Gm Knudsen, Lv Kessing, Kw Miskowiak ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background: Mood disorders are often associated with persistent cognitive impairments. However, pro-cognitive treatments are essentially lacking. This is partially because of poor insight into the neurocircuitry abnormalities underlying these deficits and their change with illness progression. Aims: This functional magnetic resonance imaging (fMRI) study investigates the neuronal underpinnings of cognitive impairments and neuronal change after mood episodes in remitted patients with bipolar disorder (BD) using a hippocampus-based picture encoding paradigm. Methods: Remitted patients with BD ( n=153) and healthy controls ( n=52) were assessed with neuropsychological tests and underwent fMRI while performing a strategic picture encoding task. A subgroup of patients ( n=43) were rescanned after 16 months. We conducted data-driven hierarchical cluster analysis of patients’ neuropsychological data and compared encoding-related neuronal activity between the resulting neurocognitive subgroups. For patients with follow-up data, effects of mood episodes were assessed by comparing encoding-related neuronal activity change in BD patients with and without episode(s). Results: Two neurocognitive subgroups were revealed: 91 patients displayed cognitive impairments while 62 patients were cognitively normal. No neuronal activity differences were observed between neurocognitive subgroups within the dorsal cognitive control network or hippocampus. However, exploratory whole-brain analysis revealed lower activity within a small region of middle temporal gyrus in impaired patients, which significantly correlated with poorer neuropsychological performance. No changes were observed in encoding-related neuronal activity or picture recall accuracy with the occurrence of mood episode(s) during the follow-up period. Conclusion: Memory encoding fMRI paradigms may not capture the neuronal underpinnings of cognitive impairment or effects of mood episodes.