Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Sensors, 9(21), p. 2945, 2021

DOI: 10.3390/s21092945

Links

Tools

Export citation

Search in Google Scholar

Glucose Level Sensing Using Single Asymmetric Split Ring Resonator

Journal article published in 2021 by Gameel Saleh ORCID, Ijlal Shahrukh Ateeq ORCID, Ibraheem Al-Naib ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this article, a biosensor composed of a single metamaterial asymmetric resonator is specifically designed for sensing the glucose level of 1 µL of solution. The resonator has two gaps, and one of them ends with a semicircle shape on which the glucose solution is placed. This design helps in confining the drops of glucose solutions in a specific area where the field is maximally confined in order to enhance the electromagnetic wave-matter interaction. Six samples of glucose solutions with concentrations that cover hypoglycemia, normal and hyperglycemia conditions that vary from around 41 to 312 mg/dL were prepared and examined by this biosensor. The resonance frequency redshift was used as a measure of the changes in the glucose level of the solutions. Without glucose solution, an excellent agreement between the measured and simulated transmission amplitude was observed. The increase in glucose concentrations exhibited clear and noticeable redshifts in the resonance frequency. This biosensor revealed a 0.9997 coefficient of determination, which implies an excellent prediction fitting model. More importantly, a sensitivity of 438 kHz/(mg/dL) was observed over the range of concentrations of the aqueous solution.