Published in

MDPI, Microorganisms, 5(9), p. 948, 2021

DOI: 10.3390/microorganisms9050948

Links

Tools

Export citation

Search in Google Scholar

Thermophilic Chloroflexi Dominate in the Microbial Community Associated with Coal-Fire Gas Vents in the Kuznetsk Coal Basin, Russia

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Thermal ecosystems associated with areas of underground burning coal seams are rare and poorly understood in comparison with geothermal objects. We studied the microbial communities associated with gas vents from the coal-fire in the mining wastes in the Kemerovo region of the Russian Federation. The temperature of the ground heated by the hot coal gases and steam coming out to the surface was 58 °C. Analysis of the composition of microbial communities revealed the dominance of Ktedonobacteria (the phylum Chloroflexi), known to be capable of oxidizing hydrogen and carbon monoxide. Thermophilic hydrogenotrophic Firmicutes constituted a minor part of the community. Among the well-known thermophiles, members of the phyla Aquificae, Deinococcus-Thermus and Bacteroidetes were also found. In the upper ground layer, Acidobacteria, Verrucomicrobia, Actinobacteria, Planctomycetes, as well as Proteobacteria of the alpha and gamma classes, typical of soils, were detected; their relative abundancies decreased with depth. The phylum Verrucomicrobia was dominated by Candidatus Udaeobacter, aerobic heterotrophs capable of generating energy through the oxidation of hydrogen present in the atmosphere in trace amounts. Archaea made up a small part of the communities and were represented by thermophilic ammonium-oxidizers. Overall, the community was dominated by bacteria, whose cultivated relatives are able to obtain energy through the oxidation of the main components of coal gases, hydrogen and carbon monoxide, under aerobic conditions.