Published in

MDPI, Remote Sensing, 9(13), p. 1737, 2021

DOI: 10.3390/rs13091737

Links

Tools

Export citation

Search in Google Scholar

Detection of Biogenic Oil Films near Aquaculture Sites Using Sentinel-1 and Sentinel-2 Satellite Images

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Biogenic films are very thin surface oils, frequently observed near aquaculture farms, that affect the roughness and the optical properties of the sea surface, making them visible in SAR and multispectral images. The purpose of this study is to investigate the potential of satellite SAR and multispectral sensors in the detection of biogenic oil films near aquaculture farms. Sentinel-1 SAR and Sentinel-2 multispectral data were exploited to detect the films around three aquaculture sites. The study is divided in three stages: (a) preprocessing, (b) main process and (c) accuracy assessment. The preprocessing stage includes subset, filtering, land masking and image corrections. The main process was similar for both datasets, using an adaptive thresholding method to identify dark formations, extract and classify them. Finally, the performance of the algorithm was evaluated based on the estimation of standard classification error statistics. The evaluation of the results was based on empirical photointerpretation and in situ photos. The results are successful and promising, with overall accuracy over 70%, while both sensors are proved to be effective in the detection, with Sentinel-1 SAR presenting slightly better accuracy (81%) than Sentinel-2 MSI (70%). There is no evidence of these films causing stress to the aquaculture farms or the surrounding environment; however, our knowledge on their presence, amount and dissolution is limited and further knowledge could contribute to efficient feeding management and fish welfare.