Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Biomolecules, 5(11), p. 691, 2021

DOI: 10.3390/biom11050691

Links

Tools

Export citation

Search in Google Scholar

Some CSF Kynurenine Pathway Intermediates Associated with Disease Evolution in Amyotrophic Lateral Sclerosis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The aim of this study was to evaluate the kynurenine pathway (KP) and amino acids profile, using mass spectrometry, in the cerebrospinal fluid (CSF) of 42 amyotrophic lateral sclerosis (ALS) patients at the diagnosis and 40 controls to detect early disorders of these pathways. Diagnostic and predictive ability (based on weight loss, forced vital capacity, ALS Functional Rating Scale—Revised evolution over 12 months, and survival time) of these metabolites were evaluated using univariate followed by supervised multivariate analysis. The multivariate model between ALS and controls was not significant but highlighted some KP metabolites (kynurenine (KYN), kynurenic acid (KYNA), 3-Hydroxynurenine (3-HK)/KYNA ratio), and amino acids (Lysine, asparagine) as involved in the discrimination between groups (accuracy 62%). It revealed a probable KP impairment toward neurotoxicity in ALS patients and in bulbar forms. Regarding the prognostic effect of metabolites, 12 were commonly discriminant for at least 3 of 4 disease evolution criteria. This investigation was crucial as it did not show significant changes in CSF concentrations of amino acids and KP intermediates in early ALS evolution. However, trends of KP modifications suggest further exploration. The unclear kinetics of neuroinflammation linked to KP support the interest in exploring these pathways during disease evolution through a longitudinal strategy.