Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Cancers, 9(13), p. 2228, 2021

DOI: 10.3390/cancers13092228

Links

Tools

Export citation

Search in Google Scholar

3T MRI-Radiomic Approach to Predict for Lymph Node Status in Breast Cancer Patients

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background: axillary lymph node (LN) status is one of the main breast cancer prognostic factors and it is currently defined by invasive procedures. The aim of this study is to predict LN metastasis combining MRI radiomics features with primary breast tumor histological features and patients’ clinical data. Methods: 99 lesions on pre-treatment contrasted 3T-MRI (DCE). All patients had a histologically proven invasive breast cancer and defined LN status. Patients’ clinical data and tumor histological analysis were previously collected. For each tumor lesion, a semi-automatic segmentation was performed, using the second phase of DCE-MRI. Each segmentation was optimized using a convex-hull algorithm. In addition to the 14 semantics features and a feature ROI volume/convex-hull volume, 242 other quantitative features were extracted. A wrapper selection method selected the 15 most prognostic features (14 quantitative, 1 semantic), used to train the final learning model. The classifier used was the Random Forest. Results: the AUC-classifier was 0.856 (label = positive or negative). The contribution of each feature group was lower performance than the full signature. Conclusions: the combination of patient clinical, histological and radiomics features of primary breast cancer can accurately predict LN status in a non-invasive way.