Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Neuromuscular Disorders, 3(11), p. 239-243

DOI: 10.1016/s0960-8966(00)00187-5

Links

Tools

Export citation

Search in Google Scholar

Cryptic splicing involving the splice site mutation in the canine model of Duchenne Muscular Dystrophy

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Golden retriever muscular dystrophy arises from a mutation in the acceptor splice site of intron 6 of the dystrophin gene. Skipping of exon 7 disrupts the mRNA reading frame and results in premature termination of translation. We are using this animal model to evaluate treatments for Duchenne muscular dystrophy, including gene repair induced by chimeric oligonucleotides. After injection of golden retriever muscular dystrophy (GRMD) muscle with a chimeric oligonucleotide to repair the lesion, immunostaining revealed a modest increase in the number of dystrophin-positive fibres at the injection sites. Dystrophin gene transcripts containing exon 7 were detected by reverse transcription-polymerase chain reaction, suggesting that low levels of splice site correction may have occurred. However, DNA sequencing of these apparently normal dystrophin gene transcripts revealed that the first five bases of exon 7 were missing. It will be important to be aware of this phenomenon with respect to further gene correction studies in the canine model.