Published in

Hindawi, Journal of Advanced Transportation, (2021), p. 1-14, 2021

DOI: 10.1155/2021/5598390

Links

Tools

Export citation

Search in Google Scholar

CNN-Enabled Visibility Enhancement Framework for Vessel Detection under Haze Environment

Journal article published in 2021 by Yuxu Lu ORCID, Yu Guo ORCID, Maohan Liang ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Orange circle
Preprint: archiving restricted
Orange circle
Postprint: archiving restricted
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Maritime images captured under haze environment often have a terrible visual effect, making it easy to overlook important information. To avoid the failure of vessel detection caused by fog, it is necessary to preprocess the collected hazy images for recovering vital information. In this paper, a novel CNN-enabled visibility dehazing framework is proposed, consisting of two subnetworks, that is, Coarse Feature Extraction Module (C-FEM) and Fine Feature Fusion Module (F-FFM). Specifically, C-FEM is a multiscale haze feature extraction network, which can learn information from three scales. Correspondingly, F-FFM is an improved encoder-decoder network to fuse multiscale information obtained by C-FEM and enhance the visual effect of the final output. Meanwhile, a hybrid loss function is designed for monitoring the multiscale output of C-FEM and the final result of F-FFM simultaneously. It is worth mentioning that massive maritime images are considered the training dataset to further adapt the vessel detection task under haze environment. Comprehensive experiments on synthetic and realistic images have verified the superior effectiveness and robustness of our CNN-enabled visibility dehazing framework compared to several state-of-the-art methods. Our method preprocesses images before vessel detection to demonstrate our framework has the capacity of promoting maritime video surveillance.