Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 21(118), 2021

DOI: 10.1073/pnas.2014364118

Links

Tools

Export citation

Search in Google Scholar

Inoculum effect of antimicrobial peptides

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Bacterial drug resistance is a crucial threat to global health, and antimicrobials with novel mechanisms of action are urgently needed. Antimicrobial peptides are natural molecules that kill bacteria mostly by perturbing their membranes, and they constitute promising compounds for fighting resistant microbes. Their activity is normally tested under standardized conditions of bacterial density. However, the bacterial load in clinically relevant infections varies by many orders of magnitude. Here, we show that the minimum peptide concentration needed for bacterial growth inhibition can vary by more than 100-fold with an increase in the density of cells in the initial inoculum of the assay (a phenomenon termed the “inoculum effect”). These findings question the utility of the currently used activity screening assays.