Published in

MDPI, Cancers, 11(13), p. 2541, 2021

DOI: 10.3390/cancers13112541

Links

Tools

Export citation

Search in Google Scholar

KRAS G12C Mutations in NSCLC: From Target to Resistance

Journal article published in 2021 by Alfredo Addeo ORCID, Giuseppe Luigi Banna ORCID, Alex Friedlaender ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Lung cancer represents the most common form of cancer, accounting for 1.8 million deaths globally in 2020. Over the last decade the treatment for advanced and metastatic non-small cell lung cancer have dramatically improved largely thanks to the emergence of two therapeutic breakthroughs: the discovery of immune checkpoint inhibitors and targeting of oncogenic driver alterations. While these therapies hold great promise, they face the same limitation as other inhibitors: the emergence of resistant mechanisms. One such alteration in non-small cell lung cancer is the Kirsten Rat Sarcoma (KRAS) oncogene. KRAS mutations are the most common oncogenic driver in NSCLC, representing roughly 20–25% of cases. The mutation is almost exclusively detected in adenocarcinoma and is found among smokers 90% of the time. Along with the development of new drugs that have been showing promising activity, resistance mechanisms have begun to be clarified. The aim of this review is to unwrap the biology of KRAS in NSCLC with a specific focus on primary and secondary resistance mechanisms and their possible clinical implications.