Published in

MDPI, Forests, 6(12), p. 688, 2021

DOI: 10.3390/f12060688

Links

Tools

Export citation

Search in Google Scholar

Pinus Pollen Emission Patterns in Different Bioclimatic Areas of the Iberian Peninsula

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background: In the Northern Hemisphere, pine forests predominate due to their natural distribution and silvicultural importance. Pinus tree species are large pollen producers. Nowadays, the context of climate change influences their distribution, abundance, growth and productivity. The objectives of the study were to assess the patterns of the Pinus flowering behavior regarding their pollen presence in the atmosphere and intensity in different bioclimatic areas of the Iberian Peninsula during recent years. Methods: The survey was carried out in three different biogeographic zones of Spain: Vigo (Eurosiberian region) and Ourense (transition area between the Eurosiberian and Mediterranean areas) located in northwest Spain and Toledo (Mediterranean area) placed in the center of the Iberian Peninsula. Airborne pollen was collected with volumetric traps in each study area from 1995 to 2019. Results: Pinus pollen showed a marked single pollination period during late March in the Eurosiberian region and April in the transition zone between the Eurosiberian and the Mediterranean area. Two different peaks with lower pollen intensity were detected during the pollen season in Toledo (Mediterranean area), the first during late March and the second from the end of May to the beginning of June. The trends detected revealed changes in the timing of the phenological cycle, such us longer pollen seasons and later end dates of the Main Pollen Season (MPS) in some cases. The mean Annual Pollen Integral (API) in the Eurosiberian area (Vigo) and transition zone (Ourense) was similar, with about 4400 pollen grains. In the Mediterranean area (Toledo), a lower API amount of 1618 pollen grains was recorded. A trend towards an increase of 126 and 80 pollen grains per year in the airborne pine load was detected in the transition and Mediterranean areas studied, respectively. Conclusions: The rates of the annual integral Pinus pollen percentage with respect to the total pollen of forest species in the atmosphere of the areas studied showed a decreasing percentage trend during the last years.