Published in

Springer, Experimental Astronomy, 3(51), p. 699-728, 2021

DOI: 10.1007/s10686-021-09716-w

Links

Tools

Export citation

Search in Google Scholar

The far-infrared spectroscopic surveyor (FIRSS)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractWe are standing at the crossroads of powerful new facilities emerging in the next decade on the ground and in space like ELT, SKA, JWST, and Athena. Turning the narrative of the star formation potential of galaxies into a quantitative theory will provide answers to many outstanding questions in astrophysics, from the formation of planets to the evolution of galaxies and the origin of heavy elements. To achieve this goal, there is an urgent need for a dedicated space-borne, far-infrared spectroscopic facility capable of delivering, for the first time, large scale, high spectral resolution (velocity resolved) multiwavelength studies of the chemistry and dynamics of the ISM of our own Milky Way and nearby galaxies. The Far Infrared Spectroscopic Surveyor (FIRSS) fulfills these requirements and by exploiting the legacy of recent photometric surveys it seizes the opportunity to shed light on the fundamental building processes of our Universe.