Published in

Nature Research, Scientific Reports, 1(11), 2021

DOI: 10.1038/s41598-021-90985-y

Links

Tools

Export citation

Search in Google Scholar

Reproducibility of CT-based radiomic features against image resampling and perturbations for tumour and healthy kidney in renal cancer patients

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractComputed Tomography (CT) is widely used in oncology for morphological evaluation and diagnosis, commonly through visual assessments, often exploiting semi-automatic tools as well. Well-established automatic methods for quantitative imaging offer the opportunity to enrich the radiologist interpretation with a large number of radiomic features, which need to be highly reproducible to be used reliably in clinical practice. This study investigates feature reproducibility against noise, varying resolutions and segmentations (achieved by perturbing the regions of interest), in a CT dataset with heterogeneous voxel size of 98 renal cell carcinomas (RCCs) and 93 contralateral normal kidneys (CK). In particular, first order (FO) and second order texture features based on both 2D and 3D grey level co-occurrence matrices (GLCMs) were considered. Moreover, this study carries out a comparative analysis of three of the most commonly used interpolation methods, which need to be selected before any resampling procedure. Results showed that the Lanczos interpolation is the most effective at preserving original information in resampling, where the median slice resolution coupled with the native slice spacing allows the best reproducibility, with 94.6% and 87.7% of features, in RCC and CK, respectively. GLCMs show their maximum reproducibility when used at short distances.