Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 4(505), p. 4989-5011, 2021

DOI: 10.1093/mnras/stab1586

Links

Tools

Export citation

Search in Google Scholar

Planets around young active solar-type stars: assessing detection capabilities from a non-stabilized spectrograph

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Short-orbit gas giant planet formation/evolution mechanisms are still not well understood. One promising pathway to discriminate between mechanisms is to constrain the occurrence rate of these peculiar exoplanets at the earliest stage of the system’s life. However, a major limitation when studying newly born stars is stellar activity. This cocktail of phenomena triggered by fast rotation, strong magnetic fields, and complex internal dynamics, especially present in very young stars, compromises our ability to detect exoplanets. In this paper, we investigated the limitations of such detections in the context of already acquired data solely using radial velocity data acquired with a non-stabilized spectrograph. We employed two strategies: Doppler Imaging and Gaussian Processes and could confidently detect hot Jupiters with a semi-amplitude of 100 m s−1 buried in the stellar activity. We also showed the advantages of the Gaussian Process approach in this case. This study serves as a proof of concept to identify potential candidates for follow-up observations or even discover such planets in legacy data sets available to the community.