Published in

Springer, Lecture Notes in Computer Science, p. 530-547, 2012

DOI: 10.1007/978-3-642-33027-8_31

Links

Tools

Export citation

Search in Google Scholar

Practical lattice-based cryptography: A signature scheme for embedded systems

Proceedings article published in 2012 by Tim Guneysu, Vadim Lyubashevsky, Thomas Poppelmann
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Nearly all of the currently used and well-tested signature schemes (e.g. RSA or DSA) are based either on the factoring assumption or the presumed intractability of the discrete logarithm problem. Further algorithmic advances on these problems may lead to the unpleasant situation that a large number of schemes have to be replaced with alternatives. In this work we present such an alternative --- a signature scheme whose security is derived from the hardness of lattice problems. It is based on recent theoretical advances in lattice-based cryptography and is highly optimized for practicability and use in embedded systems. The public and secret keys are roughly 12000 and 2000 bits long, while the signature size is approximately 9000 bits for a security level of around 100 bits. The implementation results on reconfigurable hardware (Spartan/Virtex 6) are very promising and show that the scheme is scalable, has low area consumption, and even outperforms some classical schemes.